Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Sci Pollut Res Int ; 30(38): 88366-88386, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37468778

ABSTRACT

Solar energy has emerged as one of the most promising sources of renewable energy to replace the current energy market. Flat plate solar collectors (FPSC) not only are one of the easiest collectors to produce and work with but also are cheap and economical. Due to this, extensive research has been done on FPSC to improve its efficiency and reliability. Some of the methods include using nanofluids to improve the heat transfer process, phase change materials to increase and maintain stable temperatures, or integrating the collector with additional components. This review article focuses on analyzing the recent improvements in FPSC, with a particular emphasis on the achieved efficiencies and temperatures in the studies. Additionally, it is aimed at updating the information in the current field, providing a comprehensive overview of the advancements in FPSC technology. Furthermore, the article explores the combined effects of nanofluids and phase change materials in photovoltaic/thermal (PVT) collectors, considering the resulting temperature enhancements. By critically evaluating the efficiency improvements and temperatures achieved through these approaches, this article is aimed at providing valuable insights into the state-of-the-art of FPSC and their potential for advancing solar energy utilization.


Subject(s)
Solar Energy , Reproducibility of Results , Hot Temperature , Renewable Energy , Technology
3.
J Contemp Dent Pract ; 24(3): 157-161, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37272126

ABSTRACT

AIM: This study was performed to evaluate the antibacterial efficacy of two commercially available probiotics (BIFILAC and VSL 3) as intracanal medicament against Enterococcus faecalis in endodontic therapy. MATERIALS AND METHODS: Microorganisms from commercially available probiotics (BIFILAC and VSL 3) were extracted via the manufacturer's recommendations and mixed by weight. About 30 microliters were then placed on sterile discs. The pathogenic test organism was E. faecalis set to a 1 McFarland standard challenge. A two-probiotic disc template on blood agar plates was inoculated with E. faecalis and incubated at 37°C for 48 hours and 1 week respectively. Phase-1 of the study was conducted by a disc diffusion assay test to evaluate zones of inhibition (ZOI) in millimeters (mm). Phase-2 was conducted by mixing 9 mL of 30% poloxamer 407 and MRS broth in a test tube, together with the two probiotic mixtures and E. faecalis, set at a 2 McFarland standard. Serial dilutions up to 108 were done and the mixture was placed inside root canals and incubated at 37ºC for 36 hours and evaluated for colony-forming unit (CFU)/mL counts. RESULTS: The results of phase-1 showed that probiotics Lactobacillus rhamnosus and Bifidobacterium species are effective in fighting against E. faecalis with the acceptable zone of inhibition. The results of phase-2 showed that both the probiotics are effective against E. faecalis with a reduction in the number of CFU after probiotic usage. CONCLUSION: Commercially available probiotics can be used effectively as an intracanal medicament to fight against E. faecalis, Poloxamer 407 is a promising vehicle for delivering probiotics inside the root canal system. Further in vitro and in vivo studies are needed to determine the full potential of "Bacteriotherapy" with an application of probiotics. CLINICAL SIGNIFICANCE: If probiotics are proved to be an effective intracanal medicament against E.faecalis they can be used as an alternative to calcium hydroxide as intracanal medicament with no side effects to the host.


Subject(s)
Enterococcus faecalis , Probiotics , Poloxamer/pharmacology , Anti-Bacterial Agents/pharmacology , Root Canal Therapy , Probiotics/pharmacology , Calcium Hydroxide/pharmacology
4.
J Contemp Dent Pract ; 23(11): 1122-1127, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-37073935

ABSTRACT

AIM: To assess the push-out bond strength and tubular penetration of resin-based and bioceramic sealers after employing two collagen cross-linking agents, namely, cashew nut shell liquid (CNSL) and epigallocatechin-3-gallate (EGCG) on sodium hypochlorite treated root canal dentin. MATERIALS AND METHODS: Fifty human permanent mandibular premolars selected were decoronated at CEJ, this was followed by cleaning and shaping protocols, root canals were enlarged up to 20 sizes with 6% taper and were randomly divided into the following 5 groups with 10 samples each based on the cross-linking agent and the sealer: • Group I: Irrigation with saline (control). • Group II: Irrigation with cashew nut shell liquid followed by bioceramic sealer obturation. • Group III: Irrigation with cashew nut shell liquid followed by resin-based sealer obturation. • Group IV: Irrigation with EGCG followed by bioceramic sealer obturation. • Group V: Irrigation with EGCG followed by resin-based sealer obturation. Five specimens in each group were evaluated for push-out bond strength with the universal testing machine while the remaining five specimens in each group were evaluated for depth of sealer penetration by a scanning electron microscope (SEM). The data was recorded, tabulated, and statistically analyzed. RESULTS: The push-out bond strength was found to be maximum in the apical region in all the five groups followed by the middle third and coronal region. The maximum push-out bond strength was seen in group II followed by groups III and IV, and least in group V. The mean depth of tubular penetration of sealers was found to be effective in the coronal portion followed by the middle third while the apical third region showed the least depth penetration of sealers into the tubules. The maximum penetration of sealers was revealed in group V followed by groups III and IV, and least in group II. CONCLUSION: Within the limitations of this study, it can be concluded that push-out bond strength was found to the maximum in specimens irrigated with cashew nut shell liquid and obturated with bioceramic sealer. The maximum push-out bond strength was seen in the apical third of all root canals followed by the middle and coronal region. The scanning microscopic analysis revealed maximum mean tubular penetration in the coronal portion followed by the middle third and apical third. A greater penetration was seen in specimens irrigated with EGCG and obturated with hybrid sealer. CLINICAL SIGNIFICANCE: Selection of sealers plays a pivotal role in the success of endodontic therapy. Leakage-related issues can compromise the bond strength enhancing the bond strength can be achieved through the addition of cross-linking agents.


Subject(s)
Root Canal Filling Materials , Humans , Dentin , Epoxy Resins , Research Design , Root Canal Filling Materials/chemistry , Root Canal Therapy
5.
Indian J Dent Res ; 28(3): 325-329, 2017.
Article in English | MEDLINE | ID: mdl-28722000

ABSTRACT

CONTEXT: Yttria partially stabilized tetragonal zirconia polycrystalline restorations have gained widespread use because of its enhanced strength and esthetics. During the try-in process, zirconia is likely to be contaminated with saliva. This contamination leads to a clear weakening of the bond between restorative material and cement. For this reason, zirconia surface should be cleaned before cementation. Hence, the purpose of this study is to compare the shear bond strength of zirconia restorations cleansed with various surface cleansing protocols bonded with two different resin cements. MATERIALS AND METHODS: Eighty samples of zirconia discs were prepared in the dimensions 2.5 mm diameter and 4.5 mm thickness. They were divided into two groups of each forty samples based on luting cement used. Each group was further subdivided into four subgroups of each (n = 10): Group 1: uncontaminated zirconia blocks, Group 2: saliva-contaminated zirconia blocks and cleaned only with distilled water, Group 3: saliva-contaminated zirconia blocks treated with Ivoclean, and Group 4: saliva-contaminated zirconia blocks were air abraded. Eighty human maxillary premolars were then sectioned to expose dentin and were mounted on an acrylic block. A jig was fabricated to bond zirconia with the tooth using two self-adhesive resin cements. The samples were subjected to shear bond strength testing. The data were analyzed using one-way analysis of variance and Tukey's honest significance difference test with a level of significance set at p < 0.05. RESULTS: The mean shear bond strength values of Group 1 and 2 - subgroup B are 10.3 ± 0.4 and 9.80 ± 0.7 (saliva-contaminated zirconia, cleansed with distilled water only), respectively, were lowest among all test subgroups and were significantly less than mean values of subgroup C, Group 1 - 20.45 ± 0.6 and Group 2 - 20.75 ± 0.4 (Ivoclean group) and subgroup D, Group 1 - 20.90 ± 0.3 and Group 2 - 20.60 ± 0.5 (air abrasion group) (p < 0.05) for both test groups. CONCLUSIONS: In a clinical practice, a simple application of Ivoclean can be an effective alternative to air abrasion in removing salivary contaminants and improve resin-zirconia bonding.


Subject(s)
Dental Bonding/methods , Dental Restoration, Permanent , Resin Cements/therapeutic use , Shear Strength , Yttrium , Zirconium , Bicuspid , Dental Restoration, Permanent/methods , Dental Stress Analysis , Humans , In Vitro Techniques , Saliva
6.
Antimicrob Agents Chemother ; 55(9): 4379-85, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21709102

ABSTRACT

Bacterial infections by antibiotic-resistant Staphylococcus aureus strains are among the most common postoperative complications in surgical hernia repair with synthetic mesh. Surface coating of medical devices/implants using antibacterial peptides and enzymes has recently emerged as a potentially effective method for preventing infections. The objective of this study was to evaluate the in vitro antimicrobial activity of hernia repair meshes coated by the antimicrobial enzyme lysostaphin at different initial concentrations. Lysostaphin was adsorbed on pieces of polypropylene (Ultrapro) mesh with binding yields of ∼10 to 40% at different coating concentrations of between 10 and 500 µg/ml. Leaching of enzyme from the surface of all the samples was studied in 2% (wt/vol) bovine serum albumin in phosphate-buffered saline buffer at 37°C, and it was found that less than 3% of adsorbed enzyme desorbed from the surface after 24 h of incubation. Studies of antibacterial activity against a cell suspension of S. aureus were performed using turbidity assay and demonstrated that the small amount of enzyme leaching from the mesh surface contributes to the lytic activity of the lysostaphin-coated samples. Colony counting data from the broth count (model for bacteria in wound fluid) and wash count (model for colonized bacteria) for the enzyme-coated samples showed significantly decreased numbers of CFU compared to uncoated samples (P < 0.05). A pilot in vivo study showed a dose-dependent efficacy of lysostaphin-coated meshes in a rat model of S. aureus infection. The antimicrobial activity of the lysostaphin-coated meshes suggests that such enzyme-leaching surfaces could be efficient at actively resisting initial bacterial adhesion and preventing subsequent colonization of hernia repair meshes.


Subject(s)
Herniorrhaphy/methods , Lysostaphin/therapeutic use , Surgical Mesh , Animals , Cattle , Lysostaphin/pharmacology , Male , Rats , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control , Staphylococcus aureus/drug effects
7.
Biofactors ; 30(4): 217-25, 2007.
Article in English | MEDLINE | ID: mdl-18607071

ABSTRACT

Urinary catheterization is a routine procedure in an intensive care unit (ICU) for monitoring the urine output of critically ill patients. The catheters which are most often used to help with urinary incontinence and retention also face problems like blockage, leakage and infection. These problems are due to proteins that adhere to the catheter surface and quickly build up on each other forming a protein layer. As the layers build up they can crystallize, providing the major source of blockage and leakage. Current strategies to avoid these problems include coating a catheter with silver alloy to reduce bacteria on the catheter surface. However, silver alloy coatings can lead to increased silver resistance for bacteria. Since silver is already used as an antibacterial agent in many places in a hospital, it is even more possible that resistance can develop. An alternative solution is presented involving coating latex, a common urinary catheter material with a micro layer (5-100 microns) of polyethylene glycol. This hydrogel is applied using an interfacial photopolymerization process with ethyl eosin as the photoinitiator. A 25 ppm concentration of ethyl eosin provided the strongest gel to surface adhesion and significantly lowered protein adhesion when compared to an uncoated latex substrate.


Subject(s)
Hydrogels/chemistry , Polyethylene Glycols/chemistry , Urinary Catheterization/adverse effects , Adsorption , Coated Materials, Biocompatible/chemical synthesis , Eosine Yellowish-(YS)/analogs & derivatives , Eosine Yellowish-(YS)/chemistry , Latex/chemistry , Proteins/chemistry , Urinary Catheterization/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...